Page 15 -
P. 15

( C )24. 設向量 a  (k , 4)、 b  (3 , k  1),若 a // b ,則 k 
               (A)2 或  6 (B)  2 或 6 (C)4 或  3 (D)  4 或 3

( D )25. 設 A (3 ,  7)、B (  2 , 5),則平行 AB 且與 AB 方向相反的單位向量為

(A) (12 , 5 ) (B) (12 ,  5 ) (C) ( 5 ,12) (D) ( 5 , 12)
13 13  13 13  13 13  13 13

( B )26. 平面上兩點 A (1 ,  1)與 B (  2 , 3),設長度為 3 的向量 v  (a , b)與向
              量 AB 同方向,則 2a  b  (A)  3 (B)  6 (C) 6 (D)3

                                                                                55

( B )27. 設 A (2 , 3),B (  6 , 5),C (1 ,  4),D (7 , 6),則 AB  CD 
               (A) (4 , 10) (B) (  2 , 12) (C) (2 ,  12) (D) (10 , 4)

( C )28. AB  BC  CD  DA  (A) AD (B) DA (C) 0 (D) 0

( C )29. △ABC 中,已知 AB  (6 , 4), BC  (1 , 3), AC  (x , y),求 y 
               (A) 4 (B) 6 (C) 7 (D) 3

( D )30. △ABC 之三邊長為 a,b,c,則 | AB  BC  CA | 
              (A) a  b  c (B) a  b  c (C) a  b  c (D) 0

( B )31. 設向量 p 與 q 的夾角為 30,若 | p |  3,| q |  4 ,則 p  q 
               (A)6 (B) 6 3 (C)12 (D)12 3

( D )32. 設平面上三點 A (4 ,  1)、B (7 ,  5)、C (9 , 1),則 AB  AC 
               (A)  5 (B)  3 (C)2 (D)7

( B )33. 設 a  3 i  4 j 、 b  5 i  2 j ,則( 2 a  b )  ( a  b ) 
               (A)26 (B)28 (C)32 (D)35

( D )34. 設 a 、 b 、 c 為平面上的三個向量,若 a  (3 b  c )  9 且 a  b  6,則 a  c 
                (A)6 (B)7 (C)8 (D)9

( C )35. 設 u 、 v 為平面上的兩個單位向量,若其內積為 1 ,則 u 與 v 的夾角為
                                                                                          2

                (A)30 (B)45 (C)60 (D)90
( D )36. △ABC 的三頂點為 A (1 , 2)、B (  4 , 2)、C (4 , 5),則A 

                (A)45 (B)60 (C)120 (D)135

                                                                       13
   10   11   12   13   14   15   16   17   18   19   20