高雄縣高英高級工商職業學校 Kao Ying Industrial Commercial Vocational High School

專題製作報告

你來我閃噗噗車

指導老師: 蔡忠憲 老師

科別班級: ___資 訊 __科_3 年 1 班

姓 名: 林加慧、林雅婷、

簡珮芸、葉禹含

中 華 民 國 103 年 04 月

誌 謝

團隊的專題製作需要同伴們的齊心協力,在經過幾次參與相關活動,也 培養了我們之間的默契,這是一件需要克服困難才能完成的任務,遇到問題 要想方設法來解決,而除了組員,其他人都是協助引導的角色。在製作期間 也感謝組員們不怠惰的完成各自分配到的工作,在討論的部份,偶爾也會有 一些意見上的摩擦,但還是同心協力的一同完成,而遇到問題時,我們也學 習自行尋求解決方案,除了要上網找資料也向老師們詢問,非常感謝老師們 不厭其煩的教導、指引,讓我們順利的往一個步驟去製作。

而在這次專題製作裡,我們也學到了更多專業的知識以及製作的技巧, 體會到課堂上所不一樣的經驗。瞭解到 8051 的功能,藉由 8051 製作出更完 善的功能,透過此次機會將所學的知識及技術學以致用,也加強我們於專業 上的不足,過程裡難免挫折,但我們將其做為我們的墊腳石加以突破。最後 感謝學校提供良好的資源及設備,也很感謝老師們不厭其煩以及細心的指導 同時在各位組員們的用心付出之下,我們才能順利完成此次的專題製作,也 促進了自我的成長。

學生

林林簡葉

僅上

你來我閃噗噗車-以單晶片 89C51 製作為例

中文摘要

本篇研究報告旨在透過單晶片 89C51 的學習,了解單晶片的功能及使用方法,且經由實際製作 PCB 電路的過程中去對單晶片運作有更深入的了解。會想製作紅外線障礙偵測自走車,原因於探測器對人類生命起源以及人類未來發展的重要地位,我們便利用專題製作的機會,研究最基本的紅外線遙控原理,探討如何設計一輛方便使用於各個領域的遙控自走車;故想要藉由設計一單晶片電路,配合組合語言程式去達到自動控制的目的,也因為透過設計及製作過程中,可以知道及了解,如何透過程式組合語言去設計、控制一自走車電路。小組成員同學預期此設計能先達成做到啟動和停止的功能及目的,若此階段沒問題了,再會進階地針對自走車電路再去做改良,再加入紅外線功能,可以讓自走車有自動障礙偵測的功能,故現行之小組專題製作的目標即是想透過單晶片的學習,去製作一個自動化的自走車,以達到科技與生活相結合的目的。

關鍵詞:單晶片、組合語言、自走車、紅外線

目 錄

誌謝	I
中文摘要	П
目錄	III
表目錄	IV
圖目錄	V
壹、前言	1
一、製作動機	1
二、製作目的	1
三、製作架構	2
四、製作預期成效	3
貮、理論探討	4
參、專題製作	14
一、設備及器材	14
二、製作方法與步驟	15
三、專題製作	16
肆、製作成果	21
伍、結論與建議	23
一、結論	23
二、建議	23
参考文獻	24

表目錄

表〕	1 4	專題製作使用儀器(軟體)設備一覽表	14
表	2 4	專題製作計畫書	16
表3	3 多	5段式時間電驛之材料表	20

圖目錄

啚	1.	專題製作流程圖	2
置	2	繼電器	4
邑	3	繼電器接腳編號	5
邑	4	驅動繼電器驅動電路	5
邑	5	控制直流馬達正反轉的應用電路	6
置	6	紅外線發射與接收的電路	7
邑	7	微電腦硬體介面結構圖	8
啚	8	單晶片的內部結構圖	10
圖	9	單晶片 8051 的接腳圖	11
圖	10	□單晶片埠 0 應用於 I/O 時的提升電路圖	11
置	11	製作方法與步驟	15
置	12	你來我閃噗噗車電路圖	17
置	13	紅外線控制電路圖	18
置	14	· 硬體方塊圖	19
邑	15	電路 Layout	21
邑	16	尋找資料	21
圖	17	程式撰寫	21
置	18	修改資料	21
置	19	自走車指導過程(一)	21
置	20	自走車指導過程(二)	21
置	21	電路焊接過程(一)	22
邑	22	電路焊接過程(二)	22
邑	23	成品圖(一)	22
邑	24	. 成品圖(二)	22
邑	25	自走車測試(一)	22
置	26	自走車測試(二)	22

壹、前言

一、製作動機

在工程領域中,探測器始終扮演著相當重要的角色。探測器能在不適於人類活動的地方工作,如:地形崎嶇的峭壁或坑谷、陰暗且無氧氣存在的海底、地心引力遠小於地球甚或毫無重力的外太空等環境。隨著科技愈益發達,探測器所具備的功能也愈見強大。如何設計一具性能優越的探測器,其控制原理即為最基本的環節所在。因此我們運用在校所學的相關知識,來設計一輛紅外線遙控自走車以作為探討、設計、製作與整合等工作。隨著現今科技之發展,無人自走車之應用相當的普遍。舉凡自走車應用於節省人力或危險環境中,諸如:無人搬運車、工業用機器人、探險機器人。最終之目的為節省人力,避免人類身處危險環境,又能快速精確的完成任務。目前的無人自走車種類很多,諸如:感應式、超音波感測、直流馬達、步進馬達驅動、無線遙控、PC控制……等。無人自走車主要整合光學、機械、電機領域之研究,應用感測器測得周遭物體位置,經由單晶片判讀並控制自走車前進方向。我們希望利用在學期間所修習過的相關專業知識來設計這套系統,並希望能從這過程中汲取更多的相關知識與技術。

二、製作目的

在機器人的世界中,包含了機械、自動化、光學、電子、通訊、資訊軟體、 系統安全還有創意的特性等相關學問。伴隨著人類文明的發展,許多工作都是由 電腦和機器來控制,人力漸漸地被取代。因此,我們利用現代化科技改善以保障 每個人的生活需求,這都是科技一日千里的原因。智慧型自走車的應用也逐漸普 及到居家環境清潔與居家保全之中,且相關的研究也持續進行當中,以期能使人 類有更便利更安全的生活。為此,我們便著手研究自動化相關的實驗,選擇了無 人自走車來做為專題研究的題目,希望能夠利用自走車上的紅外線、碰撞開關、 灰度感測器以及光敏等相關感測器,設計出自走車相關的應用,並應用於實務上。 經由這次專題的製作,訓練將專業的知識結合到日常生活或是各個工程領域當 中,做一個統整性的表現。在這個專題當中,共分成兩大部分,一個為控制電路 的部分,另一個為紅外線接收電路部分,這兩個部分的結合構成一個基本的架構, 因此如何掌握控制這兩大電路是這次學習的一大關鍵。有了基本架構的認識 後,便可以對其加以擴充以及增加其完備性。

三、製作架構

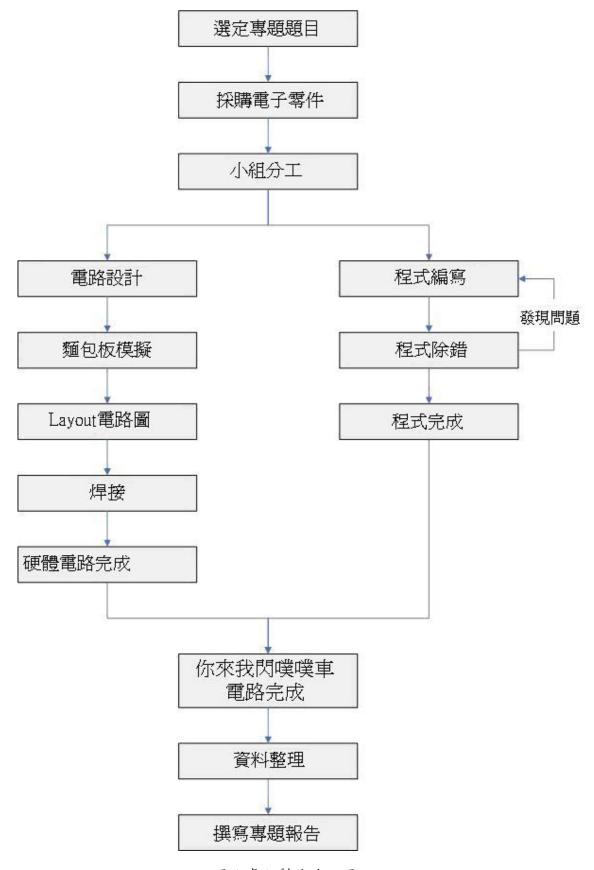


圖1專題製作流程圖

四、製作預期成效

小組成員們一開始都擔心會不會成功,都很害怕做到最後沒有成效出來,希 望經過老師的協助和同學們辛苦的付出後能得到一張漂亮的成績單,為此我們初 步定義此專題的成效為:

- (一) 打開電源開關,車即向前走。
- (二) 當右邊感應器感應到障礙物時,車會向左轉,來迴避障礙物。
- (三) 當左邊感應器感應到障礙物時,車會向右轉,來迴避障礙物。
- (四) 當左、右邊感應器同時感應到障礙物時,車會倒退到有一邊無障礙物。

因使用紅外線感應器反射來感應,對於某些情況會造成感應不良,如:

- (一) 細柱型障礙物,因無法讓紅外線反射。
- (二) 深暗色或黑色障礙物,因為深暗色或黑色屬於反射弱的顏色。
- (三) 障礙物高度過低,無法讓紅外線反射。

貮、理論探討

本章將綜覽電子實習及單晶片相關的理論與實務研究,共分為二節來進行相關的理論分析及探討。第一節介紹電子相關零組件的理論與原理;第二節說明單晶片的內部架構、特性、理論基礎及功能,以及組合語言程式設計原則。

一、電子相關零組件

(一)繼電器

「繼電器(Relay)」與一般開關不同,繼電器並非以機械方式控制, 而是一種以電磁力來控制切換方向的電門。繼電器的基本原理如下圖所 示,當線圈通電後,會使中心的軟鐵核心產生磁性,將橫向的擺臂吸下, 而臂的右側則迫使電門接點相接,使兩接點形成通路。

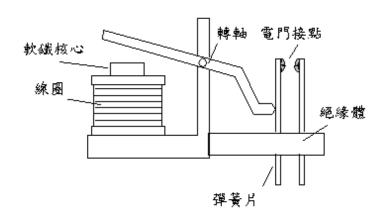


圖2繼電器

上圖是簡單的單軸單切式繼電器,一顆繼電器也可以同時切換多組電門,如下圖所示是一個雙軸雙切的繼電器,本專題使用此類型的繼電器,它有八支接腳,排列方式如圖下接腳編號

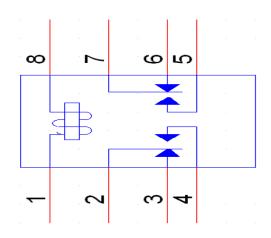


圖 3 繼電器接腳編號

另外繼電器規格除了電門接點數目不同,還要注意線圈的工作電壓是直流或是交流電,使用的電壓電流大小,切換電門耐電壓程度等,繼電器的規格有 3V、6V、9V、12V、24V、48V、100V、110V、200V、220V…等,例如一般工業界常用的繼電器接點可以耐電壓電流 110VAC-10A,線圈使用電壓為 24VDC, 共有二組或三組接點。

本專題使用 5V 的直流繼電器,8051 的 I/O pin 通常是無法直接推動繼電器的線圈,用來輔助推動繼電器線圈的方法很多,電晶體開關是最廣泛被常用的方式。

下圖是本專題驅動繼電器的驅動電路:

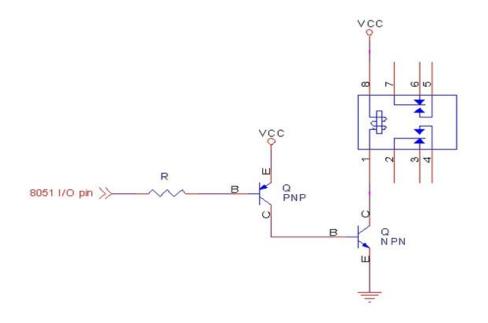


圖 4 驅動繼電器驅動電路

方法是以 8051 I/O pin 低電位來驅動繼電器,因為在 8051 起動重置時,I/O pin 都是高電位,為避免在 8051 重置時的 I/O 高電位使繼電器起動,所以設計上採用低電位來驅動繼電器較合適。

當8051 I/O pin 為高電位時,經電阻R到PNP電晶體B極,PNP電晶體E-B不導通,PNP電晶體的E-C極亦不導通,如同開路,NPN的B極無電壓,NPN電晶體不導通,繼電器線圈不起動。

當 8051 I/O pin 為低電位時,PNP 電晶體 E-B 極得到順向偏壓(大於 0.7V 的順向偏壓),PNP 電晶體 E-C 極導通,使得 VCC 電壓進入 NPN 電晶體的 B極,NPN 電晶體的 B-E 極得到順向偏壓,使 C-E 極導通,繼電器線圈的一端得以接地使線圈激磁,而起動繼電器。

(二)馬達

一般直流馬達的兩端是沒有分正負端的,當馬達的兩端電壓反接時,馬達軸心會變成反方向旋轉。下面圖示是利用繼電器來控制直流馬達正反轉的電路圖示意圖解。圖(a)中 SW1 為開路,繼電器未充磁,故繼電器電門接點保持向上位置,所以馬達順向旋轉;圖(b)中將 SW1 電門壓下,繼電器作動使電門移至向下的位置,馬達則逆向旋轉。

下圖是本專題控制直流馬達正反轉的應用電路:

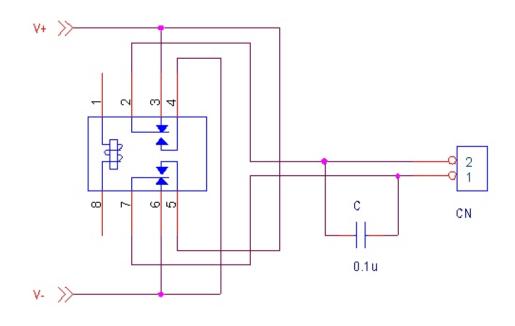


圖 5 控制直流馬達正反轉的應用電路

V+與V-是來自供應馬達轉動的直流電源,V+是正極,V-是負極。電容C是用於消除電源雜訊,CN是連接座,用於連接外部的直流馬達。當繼電器線圈未起動時,V+經繼電器 pin#3 接 pin#2 再到 CN pin#2,而V-經繼電器 pin#6 接 pin#7 到 CN pin#1,外接馬達轉動,假設是正轉。

當繼電器線圈起動時,V+經繼電器 pin#5 接 pin#7 再到 CN pin#1,而 V-經繼電器 pin#4 接 pin#2 到 CN pin#2,外接馬達得到相反的電壓,使用軸心反向轉動。

(三)障礙物偵測

值測障礙物的方法很多,大都是使用反射遮敝的原理,常用的是利用光線或紅外線,本專題使用紅外線反射遮敝的原理來偵測障礙物。

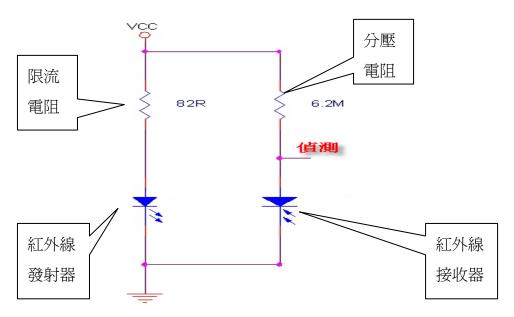


圖 6 紅外線發射與接收的電路

上圖是紅外線發射與接收的電路,左邊是紅外線發射器類似 LED, 串上一個限流電阻到電源,即會動作,只是發出的不是光線,而是紅外線。 左邊是紅外線接收,紅外線接收器串接一個分壓電阻到電源,無感應到紅外線波時,紅外線接收器內部呈現高阻抗狀態,使偵測點的分壓值為高電位。當紅外線接收器收到紅外線波時,內部阻抗值會降低,使偵測點的分壓值下降,而得到低電位,即當偵測點為低電位時,表示偵測到紅外線。

紅外線具有反射的特性,遇到越深色的表面,反射能力越小,在純 黑色的表面,幾乎沒有反射能力,利用此特性,可讓我們得到偵測障礙 物的功能。

二、單晶片結構

(一) 微電腦硬體結構

微電腦硬體結構包含中央處理單元、記憶體單元、輸入單元與輸出 單元等四個主要單元,其結構關係則如下圖所示。

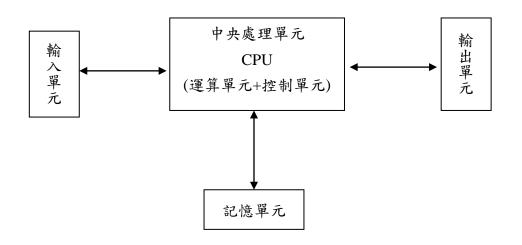


圖7微電腦硬體介面結構圖

其中,中央處理單元則是由運算單元與控制單元兩部分所組成的單元,即是一般所通稱的 CPU(Center Processing Unit),此為微電腦最重要的部分。以下就微電腦中各單元的功能做簡單介紹:

1、運算單元(Arithmetic Logic Unit,簡稱 ALU)

運算單元又稱為算數邏輯單元,在中央處理單元中可用於執行算數運算,(如:加、減、乘、除等),以及邏輯運算(如:AND、OR、NOT等),能將記憶體單元或輸入單元送至中央處理單元的資料執行各種運算。當運算完成後再由控制單元將結果資料送至記憶體單元或輸出單元。

2、控制單元(Control Unit, 簡稱 CU)

此單元在中央處理單元中,負責協調與指揮各單元間的資料 傳送與運作,使得微電腦可依照指令的要求完成工作。在執行一 個指令時,控制單元先予以解碼(Decode),瞭解指令的動作意義 後再執行(Execute)該指令,因此控制單元將指令逐一執行,直到 做完整個程式的所有指令為止。

3、輸入單元(Input Unit, 簡稱 IU)

此單元是用以將外部的資訊傳送到 CPU 做運算處理或存入 記憶體單元,一般在為電腦的輸入單元有鍵盤、磁碟機、光碟機、 滑鼠、光筆、掃描器或讀卡機等週邊設備。

4、輸出單元(Output Unit, 簡稱 OU)

此單元是用以將 CPU 處理過的資料輸出或儲存傳送外部週邊設備,一般在為電腦的輸出單元有顯示器、印表機、繪圖機、燒錄機或磁碟機等週邊設備。

5、記憶單元(Memory Unit, 簡稱 MU)

記憶體單元是用來儲存輸入單元傳送來的資料,或儲存經過中央處理單元處理完成的資料。記憶體單元之記憶體可分為主記憶體(Main Memory)與輔助記憶體(Auxiliary Memory)兩種,而主記憶體依存取方式不同,又可分為唯讀記憶體(Read Only Memory,簡稱 ROM)與隨機存取記憶體(Random Access Memory,簡稱 RAM)。ROM 所儲存的資料,在微電腦中只能被讀出但不能被寫入,也不會因為關機斷電而使資料流失;至於RAM 在微電腦中,則可被讀出或寫入資料,但在關機斷電後儲存於RAM 中的資料將會流失。輔助記憶體則是指磁片、硬碟或磁帶等週邊硬體,一般亦為輸出入單元,主要用來彌補主記憶體的不足,其容量可無限制擴充。

(二) 單晶片的內部結構

Intel 公司所推出的 MCS-51 系列產品,其內部結構如下:

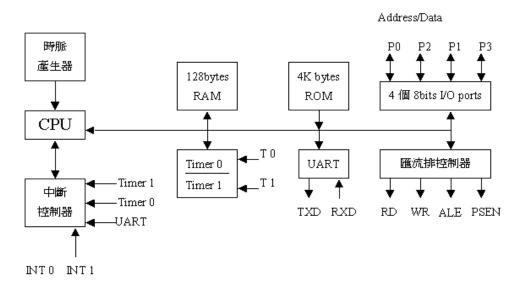


圖 8 單晶片的內部結構圖

89C51 單片具有以下之特性:

- 1.專為控制使用所設計的8位元單晶片。
- 2.具有位元邏輯運算能力。
- 3. 具有 128 位元的 RAM, 以及 4K 位元的 ROM。
- 4.具有 4 個 8 位元 I/O 埠。
- 5.具有 2 個 16 位元的計時/計數器。
- 6.具有全雙工的 UART。
- 7.具有 5 個中斷源及兩層中斷優先權結構。
- 8.具有時脈產生電路。

(三) 單晶片的接腳

89C51 與8051 皆為40 支接腳之單晶片,其接腳圖與功能說明如下:

				1
P1.0	1		40	Vcc
P1.1	2		39	P0.0./AD0
P1.2	3		38	P0.1/AD1
P1.3	4		37	P0.2/AD2
P1.4	5		36	P0.3/AD3
P1.5	6	8	35	P0.4/AD4
P1.6	7	0	34	P0.5/AD5
P1.7	8	5	33	P0.6/AD6
R5T	9	1	32	P0.7/AD7
RXD/p3.0	10	art.	31	EA
TXD/P3.1	11	單	30	ALE
77770/P3.2	12	_	29	PSEN
<u>™</u> 7/P3.3	13	題	28	P2.7A15
T0/P3.4	14	.,	27	P2.6/A14
T1/P3.5	15	片	26	P2.5/A13
₩ R /P3.6	16		25	P2.4/A12
RD /P3.7	17		24	P2.3/A11
XTAL2	18		23	P2.2/A10
XTAL1	19		22	P2.1/A9
GND	20		21	P2.0/A8

圖 9 單晶片 8051 的接腳圖

1.Vcc: +5 電源供應接腳。

2.GND:接地接腳。

3.P0.0~P0.7: 埠 0,為開洩極(OpenDrain)雙向 I/O 埠。在做為外部擴充 記憶體時,可低八位元位址線(A0~A7addressline)與資料匯 流排(databus)雙重功能。在做為一般 I/O 埠時必須加上如 下之外部提升電路。

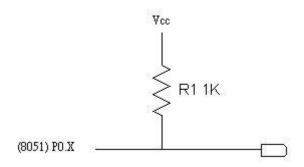


圖 10 單晶片埠 0 應用於 I/O 時的提升電路圖

4.P1.0~P1.7: 埠1,為具有內部提升電路的雙向 I/O 埠。

5.P2.0~P2.7: 埠 2, 為具有內部提升電路的雙向 I/O 埠。在做為外部擴

充記憶體時,可為高八位元位址線(A8~A15addressline)。

6.P3.0~P3.7: 埠 3,為具有內部提升電路的雙向 I/O 埠。此外,埠 3 的 每支接腳都具有另一特殊功能,其功能如下:

RXD(P3.0): 串列傳輸的接收端。

TXD(P3.1): 串列傳輸的輸出端。

INT 0 (P3.2): 外部中斷輸入端。

- MT1 (P3.3): 外部中斷輸入端。

T0(P3.4):計時/計數器外部輸入端。

T1(P3.5):計時/計數器外部輸入端。

WR (P3.6):外部資料記憶體寫入激發信號(Strobe)。

RD (P3.7):外部資料記憶體讀取激發信號(Strobe)。

7.RST: 重置信號(Reset)輸入端。在單晶片工作時,將此腳保持在"Hi" 兩個機械週期, CPU 將重置。

8.ALE: 位址鎖住致能(Address Latch Enable), 在每個機械週期都會出現,可做為外部電路的時脈源。

9. PSEN : 程式激發致能(Program Strobe Enable),可輸入外部程式記憶體的讀取信號。

10. EA : 外部存取致能(External Access Enable),當EA 接腳為"L0"時,則讀取外部程式記憶體執行。

11.XTAL1:反相振盪放大器的輸入端。

12.XTAL2: 反相振盪放大器的輸出端。

(四) 單晶片程式指令介紹

組合語言程式其定址法可分為六種:

1.直接定址法

2.間接定址法

3.暫存器定址法

4.立即定址法

5.索引定址法

6.位元定址法

1.直接定址法

所謂直接定址法,就是在指令中,直接定運算元所在的位址。僅適用於內部資料記憶體(RAM)及特殊功能暫存器(SFR)。

2.間接定址法

間接定址法是把運算元的位址存放在一個暫存器,這個暫存器就是 運算元位址的指標。

3. 暫存器定址法

8051 內部 RAM 的每個暫存器庫均含有 8 個暫存器,稱為 RO-R7, 若運算元是使用 RO-R7 的位址都稱為暫存器定址法。

4.立即定址法

立即定址法是把運算元直接放在運算碼的後面。若運算元是常數資料,則必須以"#"號當作立即值的前置符號。

5.索引定址法

8051 的索引定址法僅適用於 ROM(程式記憶體),而且只能讀出,不能寫入。所謂索引定址法就是以一個基底暫存器的內容,再加上一個索引暫存器的內容,所得的值即是運算元所在的位址。採索引定址法時,當基底暫存器的是 DPTR(資料指標暫存器)或 PC(程式記數器),當索引暫存器的則是累加器 A。

6.位元定址法

位元定址法是指對內部資料記憶體(RAM)及特殊功能暫存器(SFR)的某個位元直接設定或清除。就因為 8051 具有位元定址法,所以我們可以輕易的控制功能強大的特殊功能暫存器(SFR),讓 8051 發揮最大效用,這是 8051 很重要的角色。但是位元定址法,只能使用於可位元址的暫存器。

參、專題製作

此章共分為三節依序說明本專題所應用到之設備及器材、製作方法與步驟及專題製作等。

一、設備及器材

表1專題製作使用儀器(軟體)設備一覽表

儀器(軟體) 設備名稱	應用說明
個人電腦	專題報告、電路圖製作及進行專題成品電路測試
數位相機	拍攝小組合作過程、專題功能使用及紀錄整個專 題製作流程
雷射印表機	列印專題資料、圖片及專題報告成果
三用電錶	測量零件有無損壞及專題電路板各信號之量測
IC 萬用燒錄器	利用燒錄器將程式燒錄至 89C51 單晶片中
電源供應器	提供專題成品所需之電源
Microsoft Office Word	專題報告、製作過程的撰寫
Microsoft Office Power Point	進行口頭報告、製作及專題成品報告呈現
Keil-C	單晶片組合語言程式之編輯、燒錄軟體
Protel 99SE	繪畫專題電路之線路圖

二、製作方法與步驟

本專題之製作方法與步驟,如圖 11 所示。

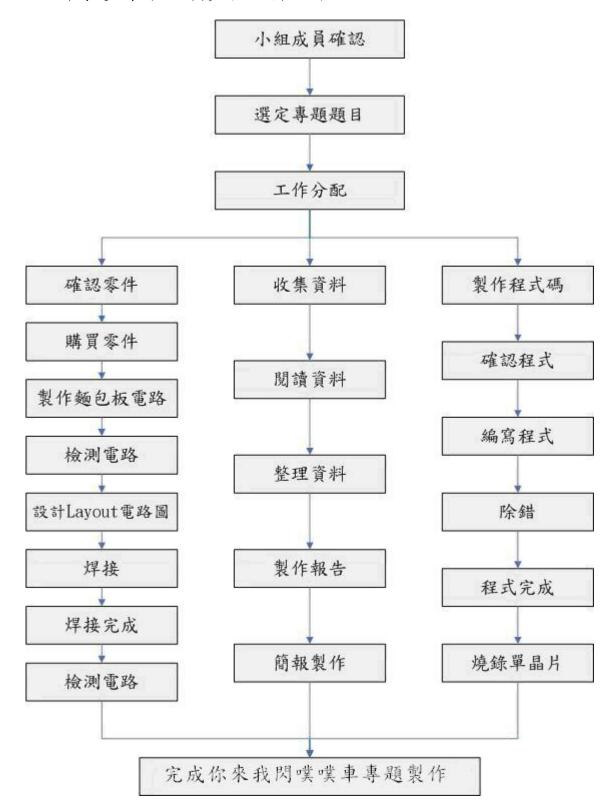


圖 11 製作方法與步驟

三、專題製作

表 2 專題製作計畫書

, T	專題型別	□ 個人型專題 ☑	團隊型專題	
專題性質		利用單晶片 89C51 製作自動化控制電路		
科別/年級		資訊科 三 年級		
専 中文名稱 題 名 英文名稱		你來我閃噗噗車		
		無人自走車主要整合光學、機械、電機領域之研究,應用		
		感測器測得周遭物體位置,經由單晶片判讀並控制自走車		
專題內容簡述		前進方向。希望能夠利用自走車上的紅外線、碰撞開關、		
		灰度感測器以及光敏等相關感測器,設計出自走車相關的		
		應用,並應用於實務上。		
指導老師姓名		蔡忠憲 老師		
參與同學姓名 專題執行日期		林加慧	林雅婷	
		簡珮芸 葉禹含		
		102 年 9月 1 日至 1	03 年 4 月 1 日	

(一) 電路圖

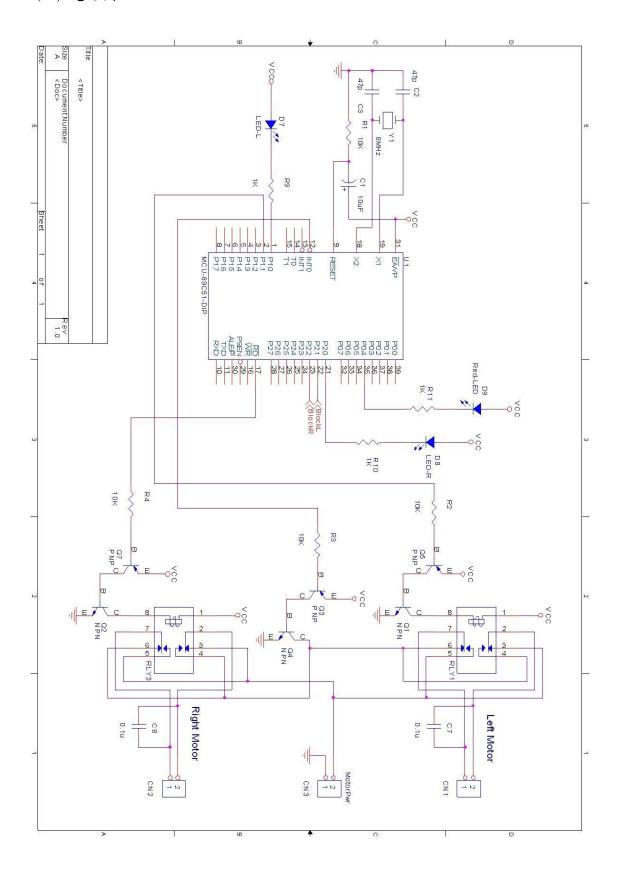


圖 12 你來我閃噗噗車電路圖

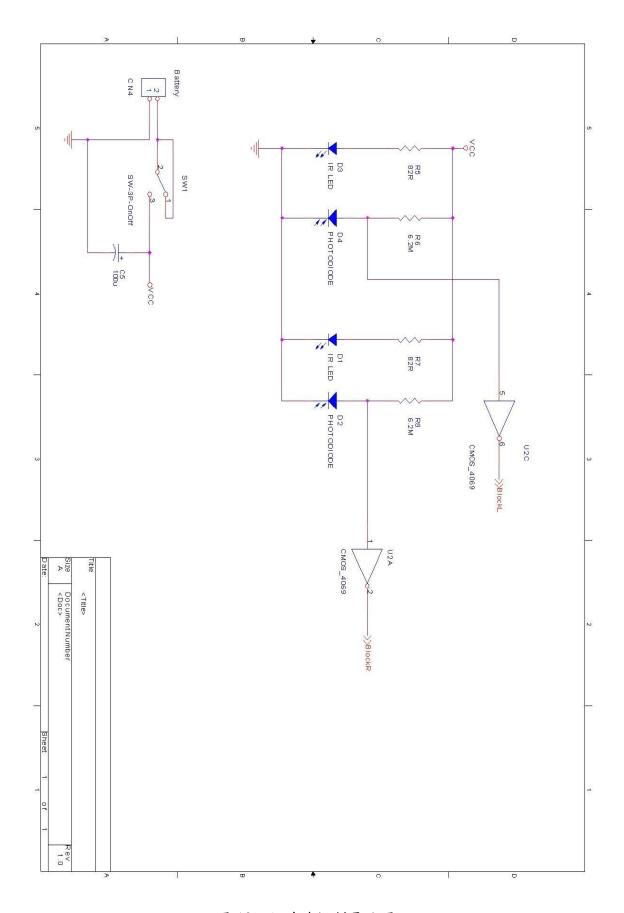


圖 13 紅外線控制電路圖

(二)硬體方塊圖

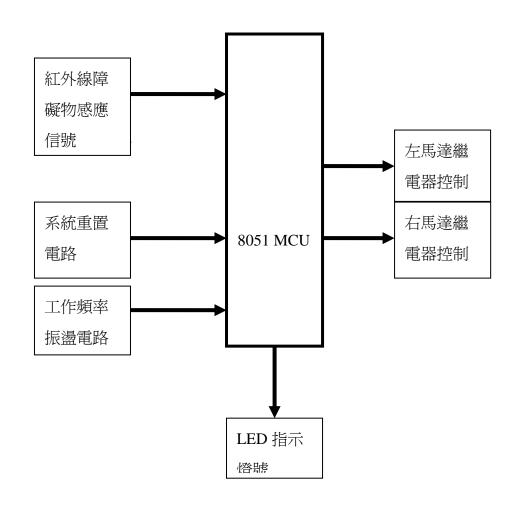


圖 14 硬體方塊圖

表 3 多段式時間電驛之材料表

材料名稱	規格	單位	數量	備註
電容(陶瓷)	47pf	個	2	
電容	0.1uF	個	2	
電容	10uF	個	1	
電容	100uF	個	1	
電阻	82	個	2	
電阻	1K	個	2	
電阻	10K	個	4	
電阻	6.2M	個	2	
電品體	2N3906	個	3	
電品體	2N4401	個	3	
單晶片	At89c51	個	1	
CMOS	4069	個	1	
石英振盪器	8MHz	個	1	
紅外線接收 LED		個	2	
紅外線發射 LED		個	2	
繼電器		個	2	

肆、製作成果

— `

圖 15 電路 Layout

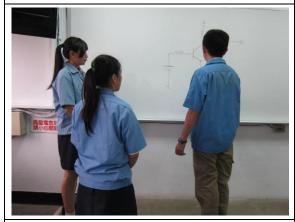
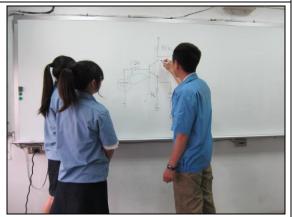

圖 16 尋找資料

圖 17 程式撰寫

圖 18 修改資料



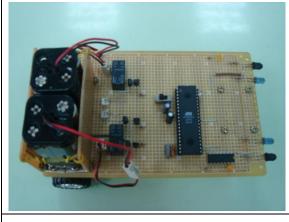

圖 19 你來我閃噗噗車指導過程(一)

圖 20 你來我閃噗噗車指導過程(二)

圖 22 電路焊接過程(二)

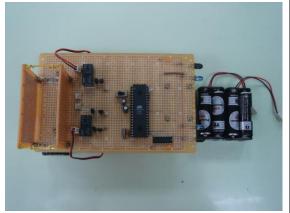


圖 23 成品圖(一)

圖 24 成品圖(二)

圖 25 你來我閃噗噗車測試(一)

圖 25 你來我閃噗噗車測試(二)

伍、結論與建議

一、 結論

- 〈一〉學校裡所學的皆以理論為主,將理論結合電路應用在日常生活中 將有效提昇學習興趣。
- 〈二〉自己動手做專題,親手製作所得到的東西最多,印象也最深刻。
- 〈三〉專題製作可培養團隊合作的精神,因彼此都會有自己的意見,學習如何去合作把意見統一。。
- 〈四〉專題的製作可以帶來很大的成就感,當完成專題時的那份喜悅只有認真負責的人能感受的到。
- 〈五〉專業知識的不足是一般專題製作過程中常遇到的事,此時老師所 扮演的角色就相對重要。
- 〈六〉資料收集不易,因往往不知從何著手,面對的是一個大電路,電 路元件皆複雜,往往會因此而失去方向。

二、建議

- 〈一〉紅外線發射與接收有角度的限制,需注意角度。
- 〈二〉控制電路的電池如果低於3.3 伏特,會造成動作不正常。
- 〈三〉在較光滑的地面操作,會因磨擦力高導致左右轉不靈敏。
- 〈四〉可外加一揚聲器,讓左、右轉,倒退有聲音效果。

参考文獻

- 1. 楊明峰 ,2008,8051入門輕鬆學,台北市:基峰資訊。
- 2. 鍾富昭 ,2003,8051 專題製作,台北市:全華文化。
- 3. 陳俊榮 ,2007,組合語言,台北市:全華文化。
- 4. 林豐隆 ,2007,專題製作,台北市:全華文化。
- 5. 傅榮鈞·林偉政 ,專題製作 8051 單晶片篇,台北縣:台科大圖書。
- 6. 徐椿樑·陳輔賢,2004,8051/8951 理論與實物應用,台北市:全華文化。